
t a b l e 2 6

I ,
EN4D

~ $
F l L ~ E 0

4-78
DOC

N
-~~~~~~~~ S A



I .0 ~ ~~
~~~~~~

I .1 ~ :~~° OOI~0
• IIII~• 11tH’ 25 IL4 MO

MICROU)~ Y ~ ~,O1 U N TL SI U
I, $



~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNIVERSITY OF CALIFORNIA , SAN DIEGO )
Department of App lied Mechanics and Engineering Sciences ~~~
La Jolla , California 92093

)
~~~~~OTE ON~~ INITE DEFLECTIQNS OF CIRC ULAR

f
L 

~
_
~
_

~~~~~J

byEj~~~iss~~er
1

j / ~~~i -

~~~ 
~/ ,4Jj ’t 

~~ 
‘/5 I 

/

MAR 23 1978

~~~~ 
J an T~~~S178 / -‘ 

e~. U L1~t~L6U tTE~B

Prepared for
OFFIC E OF NAVAL RESEA B,C I-I
Washington , D.C.

UTION ATEMENT A

_ _ _ _ _ _ _  -~~~~~ ~i~ L 4~



________ ~~~~~~~~~~

A NOTE ON Ffl’TITE DEFLECTIONS OF C IRCULAR RIN G PLATES

by

E. Reissner

Department of Applied Mechanics and Engineering Sciences
UNIVERSITY OF CALIFORNIA , SAN DIEGO

La Jolla , Califo rnia 92093

ABSTRAC T

We solve the problem of the symmetrically defo rrning edge loaded

polar-orthotropic circular ring plate for the case of large deformations

of a radially ri gid plate , and compare the results with the corresponding

solutions in accordance with the small finite deformation equations of

von Ka rman.
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A NOTE ON Ffl~ITE DEFLECTIONS OF CIRCULAR RING PLATESt

By E. Reissner

¶ . Introduction . In what follows we consider once more the problem

of rotationally symmetric deflections , wi th reference to the difference

between results derived from equations for small finite symmetric deflections

(as a special case of the equations of von Karm~ n) and equa tions for large

symmetric deflections , as given in [1]. Our principal objec t in recons idering

this question is the fo rmulation and solution of a specific problem which is of

such nature tha t the difference between the results which follow from the two

types of equations comes out to be of qualitative ( and quanti tative ) si gnif icance

in an easily recognized fashion. In addition to thi s , we will record the solu-

tion for two problems of bending and buckling fo~r which the differences turn

out to be of somewhat lesser significance.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We

recall that the two simultaneous second order different ial  equations for

me ridional slope ‘p and radial stress resultant H follow from a compatibility

• 

- equation

(r e) ’ - E r C05~~ = cos’~ - 1 , (1)

in conjunction with the moment equ ilibrium equation

A report on work supported by the Office of Naval Research.
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I

(rM ) ’ - M 8cos~~ = rH sin 9 - rV cos~~ . (2)

In these equations 
~~ 

and E are midplane st rains and M r and M 9 are

stress couples in the usual sense , w ith V being an axial st ress resultant ,

and with the prime indicating differentiation with respect to r.

Equations (1) and (2) are complemented by constitutive equations ,

= BrNr - B~ N ø , = B9N 9 - B N  
- 

(3)

•M
r 

= D~~ + D x 9 , M~ = Dex e + D x  (4)

with N and N 9 given in terms of H and V, in the form

• N = Hcos~~ + V sinq~ , N~ = (rH) ’ (5)

where , for simplicity ’s sake , radial distr ibuted loads are considered absent ,

and with x and x
9 

given in terms of p, iii the fo rm

= ço’ , rx 9 = sin rp . (6)

We further note the axial displacement formula

= s~n ’~ , 
- (7)

in which , as it is in the equilibrium equation (2), an assumption of small

me ridional strain is implied. We also note that stress resultants as well

as stress couples are defined per unit of undeformed leng th along curves

in the midplane of the plate .

For what follows it will be convenient to introduce the stress function

variables

_ _ _ _ _ _  
______ 

_ _ _ _  --~ -~~~~-—



I
F = r V  (8)

and it will be assumed that the plate is uniform , so that the constitutj ve

• coefficients B and D are independent of r. It is furthe rmore assumed

that there are also no axial distributed loads , so that the load function F

comes out to be independent of r.

With this we have , upon introduction of (3) to (6) into equations (1) and

• (2) , the two simultaneous diffe rential equations

B9(r”~”) ’ - [ B r ’cos~ rp + B (cos4~) ’]\I’

- [B r 1 sinrp cosq~ + B1,(sin~~) ‘)F = cos~p - 1 (9)

D ( r ~~’) ’ - D9r 1 sin p cos~~ = ~‘sin~ - F cos~~ (10)

Equations (9) and (10) reduce to the corresponding equations (19) and (21)

( with 
~ r 0 )  in [1], upon specialization to the case of isotropy, for which

B9 = Br B, B1, = i’B and Dr = D8 = D, D1, = liD.

• It has earlier been shown, in [2], that equa tion (9) may be replaced ,

• effectively, by the abreviated equation

B9(r ’l’’) ’ - B r 1
~I’ = cos~~ - 1 (9 ’)

and that a correspondin g simplification in ( 10), wh ich woul d consist in

replacing D9 sin~~cos~~ by D9~~, mi ght not be equally appropriate [2].

• However , for the problems considered in what follows this simp lification will

in fact turn out to be admissible as well.
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___________________________ We consider a ring plate with inne r

edge r = r . and oute r edge r = r0 and we assume that the two edges are

acted upon by axial stress resultants V. and V and radial str ess resultants

H. and H. We fur ther  assume that no bending moments are applied along

either edge. We then have in equations (9) and (10) as expression for F

• F = r V = r • V . (11)
0 0  1 1

and the boundary conditions for the fourth-order differential equation system

(9) and (10) are of the form

= ~~‘. , ‘‘(r ) = (12)1 1 0 0

sin ’p(r .) sin~~(r )
D~~~’(r .) , D1, r . 

= 0 , D~~~”( r )  + D r . (13)

We will not , in what follow s , attempt to solve the problem in the above

generality. Instead , we consider the case o~ a plate having a limiting-type

of orthotropy, of such nature as to allow a relatively simp le determination

of the diffe rences of the solution of the given problem , in compa rison with

the results which follow upo n rep lacing equations (9) and (10) by the corre~-

sponding von Ka rm~ n equations

B9(r’l’
’)’ - B r 1

’I’ = 
_ f4? , ( 14)

- D9r~~q~ = -F + ‘I’~ , (15)

with the conditions (13) being replaced by conditions of vanishing Dr~~
’ +

D r 1p = 0 for r r , rI, i o
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of a rad ially rigid plate is given upon setting in the constitutive equations

• (3)and (4)

B = B  = 0 , D . ( 16)r r

With D ~ we have then x =0 and therewithr r

~~ 
, (17)

• with the moment M r becoming a reactive quantity . Introduction of (16)

and (17) into the differential equations (9) and (10) and observation of the

reactive propert y of Mr in accordance with (2 ) changes the sys tem of

differential equations (9) and (10) into

B9(rW
’)’ = cos p - 1 , (18)

(rM ) ’ - D9r
1 sinç~~cos rp = ‘I’sin~ - Fcos~~ , ( 19)

again will the boundary conditions (12) and (13), with the latter conditions now

reverting to the form

M (r.) = 0 , M (r ) = 0 . (20)
r t r 0

In what follow s a furthe r s implif ied ve r s ion  of the above problem will  be

solved , whic h is given upon rest r ic t ing  at tent ion to cases for  wh ich  r - r.

• We now write

r = a - b , r = a + b •, (21)
• i 0

LL~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
--•

~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~
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with 3b <~ a , and we take account of the fact that r in equations (18) and

(19) does not diffe r much from its mean value a by substi tuting fo r (18) and

(19) the simplified relations

aB 9’Y = cos~~ - 1 (22)

aM - D9a 1 sinco cos~~ = ‘I’ sin p - Fcos~~ . (23)

Equation (22) , in conjunction with the boundary conditions (12),  gives

as expression for ‘~‘

• 
= [(r - a) 2 

- b2] + r - (a - b) 
- 

r - (a + b) 
(24)

The introduction of (24) into (�. , ,  in conjunctio n with the boundary

conditions (20),  give s as expression for F in terms of 
~~~~~

, and

b2 1 - cos~~0 ‘I’~ +
F = + aB 9 3 cos~~ 

+ z c os~~~,~~~~ ’o , (25)

with M 9 and N 9 now being

sin~p cos~~ - 1 ‘1’ - ‘1’.
M9 = D9 a , N 9 = a -( r - a) + Zb ‘ 

(26)

and with the corresponding expressions for Mr and Nr leading to s t ress

values which  are small compared to the values of the stresses associated

with M 9 and N 9, res pective ly.

~~~~~~ i pppoS te Axja1 Edg~~F~~ce~ Setting

= = 0 and a + b ~ a in equation (25),  we obtain as expression for the

axl tl s t ress resultant



sin(,O a l - c o s c oo( b o
V = a2 \D9 + 3 cos p I ‘ 

(27)

with the associated relative deflection w0 of the two ed ges of the plate being

the quanti ty 2b sin~~~.

Expansion of the ri ghthand side of (27) in powers of çô , and ren tention

of the leading nonlinear term give s the approximate result

~ of b2~~~o
V ~ —~-D ~ + — (28)

o a \ ~~ B9 o ’

whe re now w = 2b~~~. We note that equation (28) also follows as the exact

result of solving the identical problem throug h use of the small finite-deflec-

tion differential equations (14) and (15) and that , with D9 Eh3/ 12 and

B 9 = l/Eh , this equation may be wri~~~n in the equivalent fo rm

D w  w2
G o ’ 1 o

• V 
~ z~~.2\ l  + , (28

where , as is expecte d, nonlinearity comes out to be significant for  t ransverse

deflectiort S of the order of the plate thickness.

For a comparison of the exact and of the approximate values of V ,

we observe the numerical relations

l - c o s q ~
= 4 Slfl~~0 3co s rp  ~ 0.098 -

~~~~~ ~ 0.081 (29)

which show tha t the use of small finite -deflection theory fo r this case amounts

to an underestimation of the force n ecessa ry  to produce an angula r deflection

of 450 by nearl y twenty percent . Equations (27) and (28) show tha t this

percentage erro r increases steadily with in such a way that the exact

LL~~~ .~~~~~~~~~~~~~~~~~~~~~~ • • • • • ~~~~~~~~~~~~~ ~~~~~~~



• •.

~~~~~~

•

~~~~~~~~

•

~~~

‘ 

~~~ ~~~~ T : ~~~~~~_ I

value of V approaches infinity as 
~ 

approaches i i/2 , whereas the approxi-

• mate value in accordance with (28) remains finite.

Defle ction Due to Eq~ual and Oppos ite Transverse Follower-Forces

The case of transverse ed ge forces Q. and Q is given upon setting in (2 5 )

F , = (a + b)Q cosç~ = (a - b)Q . cos~~
(30)

‘I’ = -(a + b)Q sin p , ‘I’. = -(a - b)Q. sinço
0 0 0 1 o

The rewith, and again with a + b ~ a , equation (25 ) becomes

0 sinp , 2 1 - cos4~o o. b o
= D + —  . (3 1)cosq~ a B9 3 cos”p /

Expansion in powers of 0 and retention of the leading nonlinear

term gives the same approximate result (28) for the t ransverse  resultant

Q as was previou sly obtained for the axial resultant V .  However , the

difference between Q and V becomes si gnificant with increasing values0 0

of In pa rticular , Q remains finite as (p approaches 1T/2 , in cont rast

to the result for V
0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We now set

‘I’ = -(a + b)P , ‘I’. = -(a - b)P . (32)0 0 1 z

and at the same time set F = (a+b) V = (a-b)V . = 0.

Equation (25) now has one tr ivial solution sin~ = 0 , w i t h  M 9 = 0

and N = (‘i ’ - ‘~‘ .) / 2 b , and one non t r iv i a l  solution , w i t h  ~ re lated to P0 o 0 o
and P. in the fo rm

-8-
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ZD 9 21? 1 - coso
(a + b)P + (a - b)P . —coso + B 3 (33)

We conclude from equation (33) that buckling will occur for values and

~~ie 
given by

(a + b)P + (a - b)P . = 2D 9a~~ (34)

Equations (33) and (34) also contain a simple result for the postbuckling

behavior of the ring plate ( insofa r as the assumed deflection patte rn pers i s t s ) .

We will show this for the case P = P. for which P = D Ia2 . Equation (3 3 )
0 1. oC 9

now becomes

2b2 ~ - C O S( P

~~0 
= Poc c

~~~0o ÷ a3B9 3 ‘ (35)

and this can be solved , so as to give 0 in terms of in the post-

buckling range , in the form

(P IP ) - l  3 B D  P
1 - CO S(~Q = (2b2/ 3B 8D8) - 1 2b~ 

- 11 (36)

whe re , within the range of small-deflection theory, 1 - cosco ~~p2 /2 .
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